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a spatial torus, as a function of its length l. We do so for SU(4) and SU(5) gauge theories

in 2 space dimensions. We find that to a very good approximation the eigenstates belong

to the irreducible representations of the SU(N) group rather than just to its center, ZN .

We obtain convincing evidence that the low-lying states are, for l not too small, very

close to those of the Nambu-Goto free string theory (in flat space-time). The correction

terms appear to be typically of O(1) in appropriate units, much as one would expect if the

bosonic string model were an effective string theory for the dynamics of these flux tubes.

This is in marked contrast to the case of fundamental flux tubes where such corrections

have been found to be unnaturally small. Moreover we find that these corrections appear

to be particularly small when the ‘phonons’ along the string have the same momentum,

and large when their momentum is opposite. This provides information about the detailed

nature of the interactions in the effective string theory. We have searched for, but not

found, extra states that would arise from the excitation of the massive modes presumably

associated with the non-trivial structure of the flux tube.
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1 Introduction

Consider a D = 2 + 1 SU(N) gauge theory on a three-torus, and a loop of confining

flux that winds once around a spatial torus of length l. If this flux is in the fundamental

representation then one discovers [1, 2], that the low-lying energy spectrum of such a loop is

the same as that of a corresponding closed string in the Nambu-Goto free string theory (in

flat D = 2+1 space-time) up to very small corrections, and that this is so even when l is not

much larger than the critical length at which the flux loop dissolves. This type of calculation

is intended to provide detailed information about the effective string theory describing the

gauge theory and should be useful for theoretical approaches from the string side.
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In the usual field-theoretic picture of the confining string as some non-Abelian ver-

sion of the flux tube in a (dual) superconductor, with some complicated internal spatial

structure which should provide a complex set of internal modes to excite, it is not easy to

understand how a closed flux tube that is not much longer than it is wide, can display the

phonon-like excitations of a thin string to such a good accuracy. It is therefore tempting

to see this as evidence for some underlying duality where the starting point in describing

a flux tube is always a thin string, irrespective of its length, just as one has in the usual

gauge/gravity duality. (See [3] for some recent reviews.) Even in the latter framework,

however, one does expect states in the spectrum that are additional to those of the free

bosonic string and which arise, for example, from the non-trivial background metric near

the ‘horizon’ which leads to linear confinement. Finding such extra states would provide a

useful clue about the nature of the hypothetical dual theory. So far no such ‘extra’ states

have been identified in our lattice calculations [2] but this may be because the basis of

operators we use in our variational calculation has little overlap onto any such states (as

discussed below). This is one reason why it is useful to explore the spectrum of the quite

different flux tubes that we study in this paper.

In this paper we explore what happens to the spectrum of a winding flux tube when the

flux is in a higher representation than the fundamental. In particular for N > 3 there exist

new, completely stable flux tubes called k-strings. A k-string is a flux tube that emanates

from a source which transforms as ψ → zkψ under a global gauge transformation belonging

to the center of the group: z ∈ ZN . One may think of this source as being a composite of

k fundamental sources, together with any number of adjoint sources which do not feel the

centre. (It is clear that k and k′ = N − k are the ‘same’ and only k ≤ N/2 is interesting.)

Since k is unchanged by screening with gluons, the lightest flux tube in this sector will be

stable. That is what one usually calls a k-string. (Sometimes we shall refer more loosely

to all such flux tubes, stable and unstable, as k-strings.) While such a stable flux tube is

of especial interest, excitations thereof, including flux tubes in other representations, will

become stable at larger N and are also of interest.

Given that a single fundamental flux loop is so well described by a free bosonic string

theory, one might have expected that a k-string would simply look like some linear combi-

nation of free fundamental (k = 1) strings. So, for example, a k = 2 string might look like

a combination of a k = 1 string that winds twice around the torus, and a state consisting

of two k = 1 strings, each winding once around the torus. The free string theory would,

in this way, predict a simple relation between the string tensions: σk = kσf . However it

has been known for some time [4] that the lightest k-string is in fact strongly bound (for

k/N not too small) and only acquires the free-string value at N = ∞ (as it must, at fixed

k). Given that the binding is strong, e.g. in SU(4) one finds σk=2 ≃ 1.34σf ≪ 2σf , one

can ask to what extent such a flux tube also behaves like a free bosonic string and what

the corrections to such a behaviour tell us about the dynamics. This binding cannot be

readily incorporated into the usual analytic frameworks [9, 12] since it presumably involves

the exchange of small contractible loops of string (glueballs) that are not under analytic

control. Thus such flux tubes are of particular interest.

The ground state energy of a closed k = 2 flux tube of length l has been calculated

in [5], where it was found to be accurately described by the free Nambu-Goto string, with
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string tension σ = σk=2, and with corrections (in inverse powers of 1/σl2) that have coeffi-

cients that are O(1) in natural units. This is what one would expect if the k = 2 flux tube

were to have an effective bosonic string description at large distances, and it provides a

contrast with the fundamental flux tube where the corrections to the free string description

are very much smaller [1, 2]. In practice, however, the ground state provides only a limited

insight into the nature of the string spectrum and so, just as for the fundamental string, it is

important to perform accurate calculations of at least a few excited states. This is difficult

in a lattice calculation, where one can only hope to obtain accurate energies for those states

which have a very high overlap onto the basis that one is using. For the fundamental flux

loop we attacked this problem, with apparent success, by using a very large basis of opera-

tors [2]. Here we shall do the same for the k = 2 spectrum, using the basis described in sec-

tion 2 and in appendix A. Since we have seen from earlier calculations of this type [1, 2, 5, 6]

that lattice spacing corrections are small, we shall not perform a continuum extrapolation,

but will simply choose to perform our calculations at fixed, small values of the lattice spac-

ing a. We shall perform calculations in SU(4) and SU(5) at β = 50 and β = 80 respectively.

In the next section we briefly describe the standard aspects of our lattice calculation

and then, in some more detail, our choice of operators for winding flux tubes. We follow

that up with a summary of the corresponding free string Nambu-Goto spectrum, since

that will play an important part in the interpretation of our results. We then describe

our results for the spectrum and find that we can interpret at least some of the states

within the Nambu-Goto picture, simply on the basis of the way the energy depends on the

length. We then turn to the question of whether the flux tubes know about the full SU(N)

group or just about the ZN center and demonstrate that in fact it is the former. Next we

return to the very interesting question of whether the excited states without an obvious

Nambu-Goto interpretation might not be revealing the excitation of new, internal degrees

of freedom. To address this question we develop a heuristic method for comparing the

shapes of the k = 2 states with the k = 1 states. This study leads us to infer that all the

k = 2 energy eigenstates over which we do have control, are most likely to be Nambu-Goto

states with, in some cases, large corrections to the energy dependence. Comparing those

states for which such corrections are small, with those for which they are large, enables

us to say something qualitative and striking about where these corrections arise in the

effective string theory. We end with a summary and our conclusions.

2 Methodology

Our lattice framework is standard. We shall therefore be brief, except with those as-

pects that are important for understanding the statistical and systematic errors of the

present calculation.

2.1 Lattice field theory

We work on periodic cubic Lx × Ly × Lt lattices with lattice spacing a. The degrees

of freedom are SU(N) matrices, Ul, assigned to the links l of the lattice. Our partition

function is

Z(β) =

∫

∏

l

dUle
−β

P

p{1− 1
N

ReTrUp} (2.1)
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where Up is the ordered product of matrices around the boundary of the elementary square

(plaquette) labelled by p. The continuum limit is approached by tuning β → ∞ and in

that limit β = 2N/ag2 where g2 is the usual continuum coupling, which has dimensions of

mass in D = 2 + 1. Our numerical calculations use a standard heat bath/over-relaxation

Monte Carlo, where one updates all the SU(2) subgroups of the SU(N) matrices.

2.2 Calculating energies

We typically wish to calculate the energy spectrum of some sector of states with particular

quantum numbers (spin, momentum, parity, . . . ). We do so from correlation functions

of operators φ(t) with those same quantum numbers. In a gauge-invariant calculation,

the elementary components of such operators are typically traces of closed loops, where

contractible loops typically project onto glueballs and non-contractible (winding) loops

typically project onto winding loops of flux. In general we have

C(t) ≡ 〈φ†(t)φ(0)〉 =
∑

n=0

|〈n|φ(0)|vac〉|2e−Ent t→∞−→ |〈0|φ(0)|vac〉|2e−E0t ; Ei ≤ Ei+1

(2.2)

where on a lattice we write t = ant, so we see that all the energies will be obtained in lattice

units, as aEi (nt is the separation in the Euclidean time direction in lattice units). Clearly,

given infinite accuracy one could calculate the whole spectrum from one such correlation

function. (Apart from states with accidentally zero overlap.) In the real world of finite

accuracy, however, extracting more than the ground state energy, E0, is an ill-conditioned

problem so we shall proceed by the standard variational calculation described later on.

To obtain E0 from a numerical calculation of C(t), we perform a fit with a single

exponential to C(t) for t ≥ t1 and choose for t1 the lowest value for which we obtain an

acceptable fit. This is a way to estimate the asymptotic exponential decay in eq. (2.2). Now,

since the fluctuations that determine the error in the Monte Carlo calculation of C(t) are

themselves proportional to a higher order correlation function which can be seen to possess

a disconnected piece, the error is approximately independent of t, whereas C(t), as we see

from eq. (2.2), decreases at least exponentially with t. Thus the error/signal ratio increases

exponentially with t and one can only hope to obtain E0 accurately if the corresponding

ground state already dominates C(t) at small values of t, i.e. one needs operators φ that

have a large projection onto the desired ground state. This can be achieved using standard

smearing/blocking techniques (see e.g. [6, 7]) which produce operators that are smooth on

physical length scales, with little computational effort. If aE0 is small enough that the

error/signal ratio is small for a nontrivial range of t = ant ≥ t1, then the success of a single

exponential fit provides significant evidence for it being appropriate. If however aE0 is so

large that this range is small, then we lose such evidence, and typically we will be using

a single exponential fit over a range of t where the contribution of higher excited states

may still be significant. Thus our estimate of aE0 will tend to become too high as aE0

increases. This is an important sytematic error that will be visible in some of our results

— in particular when we consider very long flux tubes (which are very massive) or highly

excited flux tubes, even when they are not very long.
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To calculate the excited states as well as the ground states, we carry out the following

variational calculation. Consider a set of n different smeared/blocked operators, {φi(t) ; i =

0, . . . , n−1}, with the desired quantum numbers, and which have been normalised (but are

not in general orthogonal). Now find the normalised linear combination of these operators,

φ(t) = Φ0(t), that maximises C(t = t0) = 〈φ†(t0)φ(0)〉 = 〈φ†(0)| exp{−Ht0}|φ(0)〉 where

t0 is chosen small enough that all the correlators are accurately determined. (In practice

we choose t0 = a.) Then Φ0 provides our best estimate of the ground state wavefunctional.

Now consider that part of the basis {φi} that is orthogonal to Φ0, and find the operator

φ(t) = Φ1(t) that once again maximises C(t = t0) = 〈φ†(0)| exp{−Ht0}|φ(0)〉 but now over

this reduced basis. Then Φ1 provides our best estimate of the first excited wavefunctional.

Repeating this procedure we obtain a set of operators, {Φi ; i = 0, 1, . . .}, that are our

variational approximation to the exact energy wavefunctionals, {Ψi}. For each Φi we now

consider the correlation function 〈Φ†
i (t)Φi(0)〉, perform single exponential fits as described

above for the ground state, and extract an estimate of aEi.

As for the ground state, it is critical that one has good overlaps, and in practice that

means that we need |〈Ψ†
i (0)Φi(0)〉|2 ≥ 0.9. To achieve this for several excited states we

need a large basis of operators. In practice we use O(200) operators, as described below.

For excited states there are additional systematic errors. First, the excited state may be

unstable, e.g. if (Ei−E0) is greater than the lightest scalar glueball mass. This will not lead

to any visible effects in our calculation as long as the decay width is small. This will be the

case at large N , where decay widths vanish, but even in SU(3) they are usually too small to

be important. (Hence the difficulty in observing string breaking directly in lattice QCD.)

Another systematic error arises from the fact that an excited trial operator, Φi, may have a

non-zero overlap onto a lighter eigenstate, i.e. |〈Ψ†
j(0)Φi(0)〉|2 6= 0 for j < i. If this overlap is

small then it is only at large t that 〈Φ†
i (t)Φi(0)〉 will behave like ∝ exp{−Ejt} and there will

be an intermediate range of t where it will behave like ∝ exp{−Eit}, and where one can ex-

tract Ei. However as this overlap becomes more significant, the ambiguity in extracting Ei

obviously will become larger. Another systematic error arises from the fact that the excited

states show near-degeneracies that can be distorted by mixing effects which can be enhanced

and complicated by the effects of statistical fluctuations in our variational calculation.1 For

all these reasons we shall confine ourselves to discussing only the lightest few excited states.

2.3 Winding flux loops

Consider a loop of fundamental flux that winds once around the x-torus, so that it is of

length l = aLx. A generic operator φl that couples to such a periodic flux loop is the trace

of an ordered product of link matrices, lp, along a space-like curve p that winds once around

the x-torus, with the matrices in the fundamental representation. (This is an example of

a Polyakov loop, or Wilson line, which may be in a general representation.) If we multiply

all the Ux link matrices in some given x-slice of the 3-volume by an element z ∈ ZN , then

1For example, a correlation between two nearly-degenerate states, that would average to zero with infinite

statistics, can induce an artificial level repulsion.
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lp → zlp. This center symmetry keeps track of the net winding: a k-string will transform as

lp,k → zklp,k. We will now specialise to the k = 2 strings which are the subject of this paper.

We will consider k = 2 flux tubes of two kinds. First there is a flux tube that winds

once around the torus but contains flux in a representation of SU(N) that arises from the

product of 2 fundamentals and any number of adjoints. The trace of a Wilson line in such

a representation can in general be expressed in terms of a sum of operators that involve

traces of powers and powers of traces of lp and of l†p, such that the net power of lp minus the

net power of l†p is 2. In practice we shall limit ourselves to the operators Trl2p and {Trlp}2

whose linear combinations correspond to the totally antisymmetric (k = 2A) and totally

symmetric (k = 2S) representations

Φ2A = Trl2p − {Trlp}2 ; Φ2S = Trl2p + {Trlp}2 (2.3)

Since a k = 2S source can become a k = 2A source through gluon screening, there is no

reason for such operators to be orthogonal or to assume that such SU(N) representations

will be useful in labelling the actual eigenstates. Whether they are useful is a dynamical

question that we shall determine in this paper. The second type of k = 2 flux tube that we

consider is one that carries fundamental flux and winds twice around the torus. A typical

trial operator for such a flux tube will be

Φw=2 = Tr{lplp′} (2.4)

where the two single-winding paths p and p′ are in general not the same but the joint path

p̃ = pp′ is continuous and periodic with a period 2lx. Note that the w = 2 operators need

not be orthogonal to the k = 2A and k = 2S operators. Indeed because of the strong k = 2

binding, one might expect that if p and p′ are similar, so that the second winding of the flux

tube is physically close to the first winding, the attractive interactions will give a significant

probability of binding into a singly-wound k = 2 flux tube, and this will be reflected in the

overlaps of the corresponding operators. One has therefore the heuristic expectation that

to see a genuine w = 2 flux tube one needs to use very different paths p and p′.

In order to obtain good overlaps onto the true energy eigenstates, we use

smeared/blocked links in our construction of lp. Usually, and always when it matters,

as in the projection onto specific representations of the flux, we make sure that our blocked

matrices are all SU(N). (For historic reasons this is not always the case for some of our

oldest calculations, although this will not affect any conclusions we shall draw from them.)

Using operators with different levels of smearing probes different transverse size scales, and

this forms part of our variational basis.

What are the other quantum numbers that label such a flux tube? First, we recall that

in 2 space dimensions, there are no rotations around the axis of the tube and in the confin-

ing phase a flux tube that is rotated by π/2, so that it winds around the y-torus, will have

no overlap with one winding around the x-torus, so this symmetry is uninteresting. We do

however have translations and corresponding momenta. We project onto zero-momentum

transverse to the flux tube, py = 0, by adding all y-translations of our basic operator. We do

not consider py 6= 0 since previous calculations have shown that for the range of lattice spac-

ings we shall consider, the continuum energy-momentum dispersion relation is accurately

– 6 –
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satisfied and so there does not seem to be anything new that one might learn using non-zero

transverse momenta. More interesting is the momentum along the flux tube, px = 2πq/l.

Here we translate the loop by x0 in the x direction, multiply it by exp{ipxx0}, and sum over

all such translations. Clearly if the flux tube is invariant under translations along its axis,

as we might expect if it is in its ground state, then imposing q 6= 0 in this way will produce

a null state. To have q 6= 0 the state must be excited in some way. Thus calculating the

spectrum for various q 6= 0 promises to teach us something new. Another symmetry is (two

dimensional) parity, P . Again one expects that to have P = − one requires a deformation

of the flux tube, i.e. an ‘excitation’, that is different under reflection. Finally there is charge

conjugation C. This operation changes the direction of the arrow, lp → l†p, so that Reφ is

C = + and Imφ is C = −. Since lp → zlp and l†p → z†l†p under the center transformation in-

troduced earlier, there is in general zero overlap between lp and l†p so the C = + and C = −
sectors are degenerate and the label is therefore uninteresting. However this is not the case

when k = N/2. In that case there can be mixing and the C = ± sectors need not be degen-

erate. In our case, that occurs for k = 2 in SU(4). However it is easy to see that, for SU(4),

ImΦk=2A ≡ 0. Thus to the extent that there is a k = 2A sector of states, we will only have

C = + therein. For k = 2S on the other hand, C = ± can be a useful label in SU(4).

In appendix A we describe in more detail the construction of the actual operators

we use.

3 Flux tubes as strings

The immediate goal of our calculations is to provide information about the spectrum of

k-strings that will complement what we have learned previously about fundamental k = 1

flux tubes. Our wider purpose, however, is to provide useful information for theoretical

approaches to understanding confinement and the dynamics of QCD. Thus a central step

in our analysis is to compare our results to what one might expect on very general grounds,

so as to pin-point what might be new and interesting. In this section we shall first discuss

what these general expectations might be, and then we summarise the detailed spectrum

of the free Nambu-Goto string theory (in flat space-time) since this turns out to provide a

very useful comparative benchmark.

The flux tubes that will interest us here, are those that are wound around a spatial

x-torus with all other space-time dimensions effectively infinite. As we shrink the length

of this torus, l = aLx, such a system will undergo a phase transition at a critical value

l = lc = 1/Tc where Tc is the deconfining temperature. For l ≤ lc the ground state is no

longer a flux tube, but rather has zero energy. In D = 2 + 1 and for N ≥ 4 one finds

lc
√
σf ≃ 1.1 [8]. Thus if we want to discuss closed flux tubes, we must choose l > lc.

3.1 General expectations

Consider a flux tube of length l = aLx winding around the x-torus. Translations leave its

energy unchanged. However under transverse translations the state is not the same: the

choice of a position for the flux tube breaks this symmetry spontaneously and we expect

to have corresponding massless fluctuations in the excitation spectrum of the flux tube.

– 7 –
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Since we would expect the ground state to be invariant under translations along the flux

tube, we do not expect this longitudinal translation symmetry to be spontaneously broken

and we do not expect any further Goldstone bosons from that source.

Now, since the SU(N) field theory has only one scale, say lσ = 1/
√
σf , the width of

the flux tube should in general be on that scale. On length scales ≫ lσ, and for excitation

energies ≪ 1/lσ the flux tube should effectively behave as a thin string. The classical

fluctuations of such a periodic string have wavelength λn = l/n and hence frequency

ωn = 2πn/l. The corresponding oscillators will be quantised, and the excitations can be

thought of as made up out of phonons of energy ωn and with momenta pn = ±ωn along

the string. This is the expected Goldstone boson, which is massless and can have any

momentum allowed by periodicity. At large l all these eigenstates converge

lim
l→∞

En/σl = 1, ∀n. (3.1)

At finite l there will be shift in the ground-state energy from the zero-point energies of

the oscillators (essentially a Casimir energy) and this leads to the well-known Luscher

correction [9] to the string energy:

E0(l)
l→∞
= σl

(

1 − π

6

D − 2

σl2

)

(3.2)

which reflects the asymptotic low-lying n = 0 excitation spectrum

En(l)
l→∞
= σl

(

1 +
4π

σl2

(

n− D − 2

24

))

(3.3)

The coefficient of the O(1/σl2) term is universal and the value shown in eqs. (3.2), (3.3) is

the one for the simple bosonic string universality class, where the only massless excitations

of the flux tube arise from the spontaneously broken transverse translation invariance.

There is strong numerical support for this choice in the case of both fundamental and

k = 2 flux tubes [1, 5], and this is of interest since in principle there might have been other,

less obvious, massless fluctuations that would have led to a different coefficient.

The large-l expansion in powers of 1/σl2, that we see in eqs. (3.2), (3.3), arises naturally

in the classic framework of Luscher, Symanzik and Weisz, [9, 10] where one categorises

and constrains the possible interaction terms in the transverse displacement fields. These

interaction terms will in general lead to non-trivial interactions amongst the phonons and

are encoded in the higher order corrections to the ground and excited state energies shown

in eqs. (3.2), (3.3). This approach has recently led to the remarkable conclusion [10] that

the next term in this expansion is ∝ 1/(σl2)2 with the same coefficient as in the Nambu-

Goto spectrum (see below). A similar conclusion was independently reached in [11] using

the alternative Polchinski-Strominger framework [12] where one builds up an effective D-

dimensional string theory within a general string path-integral setting.

These two theoretical approaches have in common that they only hope to treat very

long flux tubes and, in effect, only eigenstates that are string-like in the sense of eq. (3.1).

However it is common to think of the confining flux tube as being qualitatively similar to a
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Nielsen-Olesen vortex, albeit one that is a non-Abelian dual-superconducter. Such a vortex

will in general also have a pattern of excitations that reflects the effective theory produc-

ing its non-trivial structure. (For an explicit example in related, more tractable theories

see [13].) These excitations will typically be massive, leading to string eigenstates with en-

ergies that will typically be ‘much’ larger than those of stringy excitations at large enough l:

Ẽ(l) ≃ E0(l) + µ
l→∞
> En(l) ≃ σl +

4π

l

(

n− D − 2

24

)

+ . . . (3.4)

One’s first guess for µ might be something on the order of the lightest glueball mass,

or the splitting between that state and its first excitation. Using values for the lightest

glueball masses from [6] this would suggest

µ ∼ 2 − 4
√
σf . (3.5)

Such states should become particularly visible at smaller values of l where the gap between

the stringy states becomes larger than this estimate for µ.

One might simply give up on describing such massive excitations in the belief that the

spectrum of anything but a very long flux tube will be too complex to be theoretically

tractable. However our earlier calculations of the low-lying excitations of the fundamental

flux loop have revealed that the simple stringy predictions of the free bosonic Nambu-Goto

string theory hold very accurately even for flux tubes as short as l
√
σf ≃ 1.5 [1, 2]. That

a flux tube which is only a little longer than it is wide should display simple string-like

excitation modes is not something that one can understand within a generic vortex picture.

It suggests that despite appearances short flux tubes do have a stringy description. Does

this mean that the flux tube is indeed a thin string, with its apparent width simply a

manifestation of the zero-point fluctuations described above? This would immediately

come up against the difficulties of defining a consistent bosonic string theory in 3 or 4

dimensions. A more interesting possibility is offered by a dual gravity description of the

AdS/CFT type. (In fact non-CFT and possibly non-AdS.) Here the flux loop is indeed

always described by a string but now this string is in a geometry that is, at least initially,

10 dimensional. Of course the spectrum is now that of a Nambu-Goto string in curved

rather than flat space-time, and this curvature is crucial to providing linear confinement

rather than a conformal-like Coulomb interaction. In this picture it may not be unnatural

for some stringy states to arise even for short strings, and the massive modes are of great

interest as they provide clues as to the geometry of the dual theory.

3.2 Nambu-Goto closed string spectrum

The simplest specific bosonic string theory is the free string theory: Nambu-Goto in flat

space-time. Of course such a theory can only be consistently formulated in 26 dimensions.

However, as discussed by Polchinski and Strominger [12], if one is interested in an effective

string theory for single long strings, then the Weyl anomaly does not pose an obstacle to

working in D < 26. (As was already pointed out long ago by Olesen [14].) The spectrum

of the Nambu-Goto free bosonic string theory in D = 2 + 1 or D = 3 + 1 and in the sector
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of a single long string, has also long been known [15, 16]. We shall briefly summarise this

spectrum here, since it will provide our central point of comparison in this paper.

Consider a single closed string that wraps w times around a spatial torus. The free

string spectrum corresponds to quantised oscillations of the string that may be thought of

as phonon modes traveling clockwise (right-handed) and anticlockwise (left-handed) along

the background string. Our convention is to take the momenta of the latter as positive

and of the former as negative. The modes are massless, corresponding to the Goldstone

bosons that arise from the fact that the presence of the background string spontaneously

breaks the transverse translation invariance. So the energy of a phonon equals the absolute

value of its momentum. This momentum is along the string and is constrained by the

latter’s periodicity to be ±2πk/lw where k = 0, 1, 2, . . . and lw = aLxw is the length of

the string. Of course, the total momentum is constrained to be 2πq/l ≡ 2πqw/lw, with

q = 0,±1,±2, . . . , since the Hamiltonian is defined on a spatial torus of size l (and not lw).

Let nL(k), nR(k′) be the number of left and right handed phonons with momentum

2πk/lw and −2πk′/lw respectively. A free string state is defined by the total set of phonons

and the total energy and momentum will be determined by

NL =
∑

k

∑

nL(k)

nL(k) k, NR =
∑

k′

∑

nR(k′)

nR(k′) k′, (3.6)

The sum of the phonon momenta is just the total momentum of the excited string and is

therefore constrained to be

NL −NR = qw. (3.7)

In addition the states have a parity, P . Under P (in two space dimensions) the transverse

displacement changes sign, so the corresponding creation operators for these displacements,

the right-handed and left-handed phonon operators, will change sign. That is to say,

P = (−1)number of phonons ≡ (−1)
P

k

P

nL(k) nL(k)+
P

k′
P

nR(k′) nR(k′)
. (3.8)

Writing down the 4-momentum of such a state and taking its scalar product, one obtains

the energy-squared:

E2
NL,NR,q,w = (σ lw)2 + 8πσ

(

NL +NR

2
− D − 2

24

)

+

(

2πq

l

)2

(3.9)

where the negative piece in the middle term arises from the zero-point energies of the

oscillators. These energy levels will have a degeneracy that is determined by the number of

different ways one can produce the same value of NL +NR in eq. (3.6). As an example we

present in table 1 the seven lowest energy levels of a closed bosonic string that winds once

around the torus for q = 0, 1, 2, in terms of the left and right movers (creation operators)

α−k and ᾱ−k′ .

3.3 Corrections to the free string

We now consider how to incorporate corrections to the free string spectrum. We consider

q = 0 and w = 1 but the extension to other values should be obvious.
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level NR NL q P = + P = −
0 0 0 0 |0〉
1 1 0 1 α−1|0〉
2 1 1 0 α−1ᾱ−1|0〉
3 2 0 2 α−1α−1|0〉 α−2|0〉
4 2 1 1 α−2ᾱ−1|0〉 α−1α−1ᾱ−1|0〉
5 2 2 0 α−2ᾱ−2|0〉, α−1α−1ᾱ−1ᾱ−1|0〉 α−2ᾱ−1ᾱ−1|0〉, α−1α−1ᾱ−2|0〉
6 3 1 2 α−3ᾱ−1|0〉, α−1α−1α−1ᾱ−1|0〉 α−2α−1ᾱ−1|0〉

Table 1. The seven lowest Nambu-Goto energy levels for the w = 1 closed string. If the number

of creation operators is even(odd) then the state has positive(negative) parity.

The conventional Luscher analysis [9, 10] of confining strings focuses on the effective

Lagrangian for the displacement field, and categorises the interactions in powers of these

fields and derivatives. Originally this showed that in an expansion of E(l) in powers of

1/σl2, the first correction, which arises from the oscillator zero-point energies, is universal

and is proportional to the string central charge. Given the universality it is no surprise

that this term, the well-known Luscher correction, is precisely what one obtains as a first

correction to σl when one expands the Nambu-Goto expression for E(l) in eq. (3.9) in

powers of 1/σl2. More recently [10] this analysis has been carried further, and it has been

shown, on quite general grounds, that in D = 2 + 1 the next term in this expansion also

coincides with what one obtains from Nambu-Goto, i.e.

En = σl +
4π

l

(

n− 1

24

)

− 8π2

σ l3

(

n− 1

24

)2

+ O(1/l4), (3.10)

where n = 0, 1, 2 . . .. Quite independently, an extension [11] of the work of Polchinski and

Strominger [12] reached the same conclusion (but for D = 3 + 1 as well).

In our calculations of the k = 1 flux loop [1, 2] we discovered that the actual spectrum

is reproduced by the free string Nambu-Goto spectrum much better than one would expect

from eq. (3.10). In fact there is even good agreement for values of l that are so small

that the expansion of eq. (3.9) in powers of 1/σl2 completely diverges. The implication is

clear [2]: we should use the full Nambu-Goto expression as our starting point, and consider

corrections to that. In that spirit we write

E2
n(l) = (σl)2 + 8πσ

(

n− 1

24

)

− σ
Cp

(l
√
σ)

p , p ≥ 3 (3.11)

where p = 3 corresponds to the O(1/l4) correction in eq. (3.10). In this paper we will fit

our k = 2 spectra with eq. (3.11), with the leading permitted correction of p = 3.

4 Spectrum of k = 2 flux tubes

We have performed calculations in SU(4) and SU(5) at β = 50 and β = 80 respectively.

Since β = 2N2/aλ, where λ = g2N is the ’t Hooft coupling, these values of β should
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correspond to roughly the same value of the lattice spacing a, and indeed we find

a
√
σf =

{

0.1310(2) : SU(4), β = 50

0.1298(1) : SU(5), β = 80
(4.1)

Extensive experience with glueball masses [6] the deconfinement temperature [8] and the

spectrum of fundamental strings [1, 2] indicates that lattice spacing corrections for such

values of a are negligible and we shall therefore assume that what we obtain is indeed

continuum physics.

We calculate the k = 2 spectra of flux tubes winding around x-tori that range in length

from l = 12a to l = 32a. As we see from eq. (4.1) this corresponds to l
√
σf ∈ [1.56, 4.20].

Thus our shortest flux tubes are presumably not much longer than they are wide — hardly

‘tubes’ at all. For comparison, the minimum length lc below which we lose such flux tubes

completely is [8]

lc =
1

Tc
≃

{

8.1a : SU(4), β = 50

8.3a : SU(5), β = 80
(4.2)

Since we are interested in accurately identifying corrections to the asymptotic linear vari-

ation with l, it is important that we minimise systematic errors that vary with l. Thus at

small l we must make Lt large enough so that the contribution of both k = 1 and k = 2

loops to the partition function is negligible, and all our energies are normalised to the

correct vacuum energy. Similarly we must also make the transverse size Ly large enough

to avoid finite size corrections. Thus, following a variety of checks, the lattices we use for

SU(5) are: 12×32×80, 16×32×40, 20×24×32, 24×24×32, 28×28×32, 32×32×32. For

our SU(4) calculations, which were performed earlier, we use slightly smaller lattices, where

finite volume corrections, for the smallest values of l could be non-negligible: 12× 24× 40,

16 × 24× 40, 20× 24 × 32, 24 × 24 × 32, 28 × 28 × 32, 32 × 32× 32. We typically perform

500,000 Monte Carlo sweeps and measure the full correlation matrix every 5 sweeps.

As described earlier, the relevant quantum numbers in labelling our k = 2 flux tubes are

the momentum, q, along the flux tube and the parity P . We ignore charge conjugation since

it is only relevant for N = 4, and then only for the heavier k = 2S states. In addition,

the flux may be in different representations of SU(N). The SU(N) representation is,

however, not a conserved quantum number since it can change under screening by gluons.

Nonetheless we shall see later that the mixing between k = 2A and k = 2S states is typically

very small, and so in our analysis in this section we shall categorise the states in this way

as well. (Our basis of operators does not allow us to explore other representations.) Note

that where it significantly improves the calculation we use our full k = 2 basis of operators,

although we categorise the states by their dominant k = 2A or k = 2S component.

4.1 k = 2A

In figures 1 and 2 we plot the energies of the lightest states with momenta q = 0, 1, 2 along

the flux tube, for SU(4) and SU(5) respectively. We observe that for all values of l the

lightest q = 0 state has P = +, the lightest q = 1 state has P = −, and for q = 2 there are

two nearly degenerate lightest states, one with P = + and one with P = −. We note that
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NG NL = 2, NR = 0
ground state q = 2, P = +
ground state q = 2, P = −

NG NL = 1, NR = 0
ground state q = 1, P = −

NG NL = NR = 0
ground state q = 0, P = +
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Figure 1. Energies of the lightest four states with q = 0, 1, 2, for winding flux tubes in the

k = 2 antisymmetric representation of SU(4) at β = 50. Lines are the Nambu-Goto predictions of

eq. (3.9), with the string tension obtained by fitting the ground state.

NG NL = 2, NR = 0
ground state q = 2, P = +
ground state q = 2, P = −

NG NL = 1, NR = 0
ground state q = 1, P = −

NG NL = NR = 0
ground state q = 0, P = +
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Figure 2. Energies of the lightest four states with q = 0, 1, 2, for winding flux tubes in the

k = 2 antisymmetric representation of SU(5) at β = 80. Lines are the Nambu-Goto predictions of

eq. (3.9), with the string tension obtained by fitting the ground state.

these quantum numbers and (near-)degeneracies are precisely those of the Nambu-Goto

free string theory. (See table 1.) All these states have a projection onto 2A that is very

much larger than onto 2S and we therefore regard them as constituting part of the 2A
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Figure 3. Flux tube excitation energies from the SU(4) q = 1, 2 calculations in figure 1, extracted

using eq. (4.6). Lines are the Nambu-Goto predictions from eq. (3.9).

spectrum. We have removed all lattice units by normalising the loop energies and the loop

lengths to the value of a
√
σf that has been obtained from k = 1 flux loops in the same

calculation. (The errors on this quantity are much smaller than all our other errors.)

We fit the q = 0 ground state using the Nambu-Goto expression with the leading

permitted correction, as in eq. (3.11), [10, 11],

E2(l) = (σ2Al)
2

(

1 − π

3

1

σ2Al2

)

− σ2A
C3

{√σ2Al}3
(4.3)

to obtain

a2σ2A = 0.023233(51) = 1.354(5)a2σf ; C3 =2.93(21) : SU(4) (4.4)

a2σ2A = 0.025825(50) = 1.533(4)a2σf ; C3 =2.28(22) : SU(5) (4.5)

Note that the values of σ2A/σf are close to the quadratic Casimir ratios, k(N−k)/(N−1).

We observe that when expressed in terms of natural units, as in eq. (4.3), the correction

to Nambu-Goto has a coefficient C3 ∼ O(1). This is a natural value if we regard the string

theory as an effective theory, in the Nambu-Goto universality class. It is to be contrasted

with the value C3 ∼ O(1/10) that one finds for the fundamental flux tube, and serves to em-

phasise how remarkably well the latter is described by the free bosonic Nambu-Goto string

theory. Using these calculated values of σ2A, we calculate the lightest q = 0, 1, 2 energies of

the Nambu-Goto model, and plot the results in figures 1 and 2. We observe an excellent

agreement between our numerical results and the Nambu-Goto values. Note that once the

q = 0 ground state has been fitted, the q = 1, 2 energies are parameter-free predictions.

Since the Nambu-Goto prediction appears to work so well, it is worth examining the

results more closely to try and isolate how well the phonon excitation energy is being
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Figure 4. Flux tube excitation energies from the SU(5) q = 1, 2 calculations in figure 2, extracted

using eq. (4.6). Lines are the Nambu-Goto predictions from eq. (3.9).

reproduced by our numerical results. To do this we note from eq. (3.9) that the piece of

the energy that is due to the phonons is given by

∆(q, l) = E2
gs(q; l) − E2

gs(q = 0; l) −
(

2πq

l

)2

(4.6)

Using our numerically calculated values for Egs(q; l) we obtain the results displayed in

figures 3 and 4 for SU(4) and SU(5) respectively, where we plot ∆/πσ which provides the

effective value of 4(NL+NR). (We choose to use our numerical value for Egs(q = 0; l) rather

than the Nambu-Goto prediction since the former already has some small corrections which

we would regard as belonging to the Casimir energy rather than to the excitation energy

that we are trying to isolate here.) For comparison we show the Nambu-Goto phonon

excitation energies as well. We observe that the simple free string excitation energies

provide an excellent description of the string excitation energies over almost our whole range

of string lengths, with significant deviations only beginning to appear at the smallest value

of l, l
√
σ ≃ 1.5. Given the qualitative (quantum numbers, degeneracies) and quantitative

agreement between Nambu-Goto and our results, we will assume that these eigenstates are

very close to those of the free string theory, with the corresponding phonon excitations.

We began this section with the ground states for various q because, as explained earlier,

ground state energies can be extracted more reliably than excited state energies. We now

turn to the excited states that form the low-lying q = 0, P = + spectrum. We plot our

results for SU(5) in figure 5 together with the Nambu-Goto predictions. (The SU(4) results

are essentially the same and are given in figure 6.) The first excited state shows substantial

deviations from the free string energies, and the next two states even more so. However

at least the former does seem to be approaching the free string energy as l increases. This
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Figure 5. Energies of the lightest four states with P = + and q = 0, for winding flux tubes in the

k = 2 antisymmetric representation of SU(5) at β = 80. Lines are the Nambu-Goto predictions of

eq. (3.9), with the string tension obtained by fitting the ground state.

NGNL = NR = 2
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Figure 6. Energies of the lightest four states with P = + and q = 0, for winding flux tubes in the

k = 2 antisymmetric representation of SU(4) at β = 50. Lines are the Nambu-Goto predictions of

eq. (3.9), with the string tension obtained by fitting the ground state.

might tempt us to see it as a string excitation, but this would be dangerous, since we

also observe that to quite a good approximation this first excited state is greater than the
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Figure 7. Energies of the lightest four states with q = 0, 1, 2, for winding flux tubes in the k = 2

symmetric representation of SU(4) at β = 50. Lines are the Nambu-Goto predictions of eq. (3.9),

with the string tension obtained by fitting the ground state.

ground state by a constant value,

E1(q = 0, l) ≃ E0(q = 0, l) + ǫ ; ǫ ≃ 2
√
σf , (4.7)

which is reminiscent of our expectation for non-stringy states as described in

eqs. (3.4), (3.5). Such a state would cross the level of the first string excitation at some

larger l, and perhaps that, and not a convergence, is what we are seeing in figure 5. At this

stage we clearly cannot decide how to classify this excited state. We shall return to this

question in a later section, where we shall find that looking directly at the wavefunctional

will give us an unambiguous answer.

4.2 k = 2S

As we shall see later on, all the states we analyse appear to transform primarily as k = 2A

or as k = 2S (or as w = 2 fundamental). However the lowest k = 2A states are much

lighter than the corresponding k = 2S states, so the latter will be much more susceptible

to the systematic errors discussed in section 2.2 — in particular to their masses being

over-estimated.

Bearing this caveat in mind, we display in figures 7 and 8 the energies of the lightest

k = 2S states with momenta q = 0, 1, 2, for SU(4) and SU(5) respectively. Qualitatively

the picture is much as for the k = 2A states: we find that for all values of l the lightest

q = 0 state has P = +, the lightest q = 1 state has P = −, and for q = 2 there are

two nearly degenerate lightest states, one with P = + and one with P = −. All this fits

in with the Nambu-Goto free string picture. Turning to a quantitative comparison with

– 17 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
9

NG NL = 2, NR = 0
ground state q = 2, P = +

ground state q = 2, P = −
NG NL = 1, NR = 0

ground state q = 1, P = −
NG NL = NR = 0

ground state q = 0, P = +

l
√
σf

E/
√
σf

4.543.532.521.5

16

14

12

10

8

6

4

2

0

Figure 8. Energies of the lightest four states with q = 0, 1, 2, for winding flux tubes in the k = 2

symmetric representation of SU(5) at β = 80. Lines are the Nambu-Goto predictions of eq. (3.9),

with the string tension obtained by fitting the ground state.

Nambu-Goto, we encounter an immediate difficulty. Our estimate of the l = 32 ground

state energy is too high to fit in with an E(l) tending to an asymptotically linear behaviour.

We therefore assume that what we are seeing here is the result of a systematic error of the

kind described in section 2.2, and which is perhaps twice the size of the statistical error.

If we exclude this value from our fit to the q = 0 ground state using eq. (3.9), we obtain

a2σ2S = 0.03957(45) = 2.306(27)a2σf : SU(4) (4.8)

a2σ2S = 0.03793(33) = 2.251(20)a2σf : SU(5) (4.9)

(where the correction coefficients, C3, are not well-determined). In fact if we had included

the l = 32 data point we would have obtained almost identical values of σ2S , but with a

much worse χ2. We note once again that the values of σ2S/σf are close to the quadratic

Casimir ratios, in this case k(N + k)/(N + 1).

Using these values of σ2S , we show the corresponding q = 0, 1, 2 ground state Nambu-

Goto spectra in figures 7 and 8. Semi-quantitatively the agreement is good; however the

longer, more massive states tend to overshoot the predicted values. It is plausible that this

is again due to the systematic errors of our calculation growing with the calculated mass.

In figure 9 we extract the phonon excitation energies from our SU(5) values, using

eq. (4.7). (The SU(4) results are very similar.) There is good qualitative agreement with

Nambu-Goto, but clearly we cannot say more than that.

In contrast to the k = 2A case, we have severe difficulty in extracting excited state

energies and hence do not attempt to produce a plot that is analogous to figure 5.

To conclude, it is probably fair to say that the q = 0, 1, 2 ground states provide

significant evidence that the k = 2S flux tube also behaves like a free bosonic string, at
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Figure 9. Flux tube excitation energies from the SU(5) q = 1, 2 calculations in figure 8, extracted

using eq. (4.6). Lines are the Nambu-Goto predictions from eq. (3.9).

least for these states, but that any attempt at a stronger statement is hampered by the

current uncertainties of our numerical calculations for these very massive excited states.

5 Group or centre?

For each k, and for each set of conserved quantum numbers P,C and q, there should only be

one absolutely stable flux tube. (Except e.g. where it can decay into a string with the same

k but with some of the other quantum numbers different, and accompanied by glueballs

that carry the compensating quantum numbers.) However, flux tubes carrying flux in an

SU(N) representation with N -ality k that is, in general, not stable, can be stable enough

to be readily identifiable in our calculations. If so it is an interesting question to ask if

they are individually described by an effective bosonic string theory with an appropriate

string tension. We have, of course, already answered this question in the affirmative in

earlier sections, where we examined the k = 2 flux tubes in the totally symmetric and

antisymmetric representations. (Which are the only ones accessible to our limited choice

of operators.) Here we will present evidence that the portion of the k = 2 spectrum

accessible to us is, to a good approximation, the sum of disjoint k = 2A and k = 2S

spectra. This provides the promised continuation of the discussion of this question in [5]

to which we refer the reader for further background.

5.1 Operator overlaps

We begin by looking at the overlaps of our k = 2A basis operators, {Φi
2A, i = 0, 1, 2, . . .},

onto their k = 2S counterparts, {Φi
2S , i = 0, 1, 2, . . .}. For this purpose we define the
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normalised overlaps:

OAS(i, j; t) =
< Φ†

2A,i(t)Φ2S,j(0) >

< Φ†
2A,i(t)Φ2A,i(0) >1/2< Φ†

2S,j(t)Φ2S,j(0) >1/2
(5.1)

In table 4 of [5] we presented results for such overlaps, at t = 0, using a small basis of

blocked/smeared Polyakov loops of length l = 24a on a 24232 lattice in SU(5) at β = 80

(corresponding to l
√
σf ∼ 3). We found that most of the overlaps were zero within errors,

except for those where at least one of the operators was at the largest blocking level; but

even there the largest overlap was still a very small ∼ 0.03. This provided some striking

evidence that the theory does indeed break up into almost disjoint k = 2A and k = 2S

sectors. However, while this small basis has a reasonably good overlap onto the k = 2A

and k = 2S ground states, the overlap onto excited states is in general poor. It is therefore

interesting to see what happens when we consider the much larger operator basis of the

present paper, which has a good overlap onto most of the low-lying states. Another question

is how much the results of [5] are affected by finite volume corrections. The point being that

the only significant overlaps were for the largest 5’th blocking level, where the blocked link

is of length 16a and has a width that is at least as large — that is to say, the operator more-

or-less covers the whole spatial torus. Finally a very interesting question is what happens

for t 6= 0, since this probes more directly the represntation content of the energy eigenstates.

To address the question of finite volume corrections we perform some t = 0 calculations

in SU(4) at β = 32. (Since in SU(4) the k = 2A operators are necessarily C = +, we

take their overlaps with the C = + piece of the k = 2S operators.) We start with l = 16a

because this also corresponds to l
√
σf ∼ 3. Note that on a 162 spatial lattice the 5’th

blocking level really does cover the whole spatial torus; so any finite size corrections should

be larger than in [5].

We show a selection of the overlaps on a 16220 lattice in table 2, including all those

which are large enough to be significant. (Nearly all those not shown are zero within errors.)

We see that a few overlaps are indeed not small, but that they again occur when one of the

operators is at the largest blocking level. We now see what happens if we keep the same

loop length, but vary the transverse spatial size, i.e. we work on 16 × ly spatial lattices

where we vary ly. What one finds is that the overlaps rapidly decrease with increasing ly
(and rapidly increases as we decrease ly below l).We show examples in table 2 for ly = 20

and ly = 48. The decrease is however not to zero but to a finite value; in fact the ly = 48

values are asymptotic within errors. These values are very small, and much smaller than

on the original 162 torus. We now turn to what happens as we increase l while staying on

an l2 lattice. As we see in table 2 this also strongly decreases the overlaps. In this case

all the overlaps appear to tend to zero as l increases. Of course higher blocking levels will

become possible at larger l, and we would expect the largest of these to sometimes generate

significant overlaps, but such operators will, eventually, have very small overlaps onto the

low-lying flux loop states.

We now turn to the overlap between all the operators in our extended basis. These

have been calculated on a 323 lattice for P = +, q = 0 and SU(4) at β = 50. A table is not
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OAS(t = 0)

bA bS l = ly = 16 l = 16, ly = 20 l = 16, ly = 48 l = ly = 20 l = ly = 24

1 1 0.0002(3) 0.0001(13) -0.0014(13) -0.0001(3) -0.0001(4)

2 2 -0.0001(3) 0.0020(10) -0.0010(9) 0.0001(2) -0.0001(3)

3 3 -0.0001(3) -0.0004(14) -0.0003(10) -0.0001(3) 0.0003(4)

4 4 0.0025(3) 0.0001(18) -0.0017(12) 0.0003(4) -0.0002(4)

4 5 0.1822(3) 0.0589(19) 0.0277(10) 0.0142(4) -0.0027(4)

5 4 0.0353(3) 0.0118(16) 0.0007(13) 0.0040(3) 0.0003(3)

5 5 0.2806(4) 0.1335(22) 0.0404(13) 0.0472(4) 0.0005(5)

Table 2. Overlaps of Polyakov loops in the k=2A and k=2S representations, with blocking levels bA
and bS respectively, at t = 0 and as defined by eq. (5.1). For SU(4) at β = 32.0 on l×ly×20 lattices.

|OAS |
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Figure 10. The overlap |OAS(i, j; t = 0)| as defined by eq. (5.1) for SU(4), L = 32a, P = + and

q = 0 with i, j = 1 − 80.

practical, so we provide in figure 10 a three-dimensional plot of the values of |OAS(i, j; t =

0)| as i and j run over our basis of some 80 operators. As we might have expected from our

more limited study above, the overlaps are mostly very small, and usually zero within the

errors. Only those that involve operators at the very largest blocking levels are significant

although even these are numerically small. (Here the 5’th blocking level is the largest,

and it appears in our operator labeling at multiples of 5.) We can further assume, given
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OAS(t) 24232

bA bS t = 0 t = 1 t = 2

1 1 0.0001(2) 0.0075(31) 0.0055(186)

2 2 -0.0000(3) 0.0000(10) -0.0010(27)

3 3 0.0002(3) 0.0002(6) -0.0017(14)

4 4 0.0008(4) 0.0010(7) 0.0017(12)

4 5 0.0098(5) 0.0151(8) 0.0224(13)

5 4 0.0043(4) 0.0059(7) 0.0086(13)

5 5 0.0292(5) 0.0380(9) 0.0489(14)

Table 3. Overlaps of Polyakov loops in the k=2A and k=2S representations, with blocking levels bA
and bS respectively, at t = 0, 1, 2 and as defined by eq. (5.1). For SU(5) at β = 80.0 on 24232 lattices.

what we found above, that most of these larger values are much enhanced by finite volume

corrections. Thus this study confirms that even when we extend the basis so that it is

quasi-complete for the low-lying spectrum of the k = 2 flux tube, the near-orthogonality

of the k = 2A and k = 2S sectors is maintained. Physically this suggests that the effects

of screening k = 2S down to k = 2A are very weak, and why that should be so, even in

SU(4), needs to be better understood.

Of course the near orthogonality of the k = 2A and k = 2S sectors does not neces-

sarily imply that the energy eigenstates belong to one sector or the other (although it is a

condition for that to be possible). To be sensitive to the eigenstate content we need to look

at |OAS(i, j; t)| for t 6= 0. Since the correlators decrease exponentially with t, we only have

accurate results for the lowest values of t and we will therefore restrict ourselves in the fol-

lowing dicussion to t ≤ 2. Now, if the eigenstates were linear combinations of comparable

amounts of k = 2A and k = 2S, then we would expect to find |OAS(i, j; t 6= 0)| ∼ O(1).

If on the other hand |OAS(i, j; t 6= 0)| is ‘small’ then this suggests that the lightest states

are largely in one sector or the other. To determine which is the case, we turn to our high

statistics calculation on a 24232 lattice in SU(5) at β = 80. In table 3 we show the same

selection of overlaps as in table 2, but now for t = 0, 1, 2. (The t = 0 results differ from

those shown in [5] because the statistics here are ten times greater.) We see that the t 6= 0

overlaps do indeed remain very small. Moreover some lower statistics calculations on a

24 × 32 × 32 lattice show that with such a larger transverse size, the overlaps decrease by

a factor ∼ 5 − 10. Thus we conclude that the overlaps for t 6= 0 are also very small, and

the low-lying eigenstates cannot be comparable mixtures of k = 2A and k = 2S. To make

this more precise we shall now turn to an analysis of the actual eigenstates.

5.2 State overlaps

What we will do in this section is to estimate the overlaps of the actual string eigenstates

onto the k = 2A and k = 2S sectors. Our approach to this question, which is somewhat

different to that employed in [5], is as follows.

Let {Ψ̃i} be the true energy eigenfunctionals ordered, as usual, by their energy {Ei}.
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Using only our k = 2A basis, let the variationally calculated trial eigenfunctionals be

{Φ̃2A,i}. Suppose now that Φ̃2A,j corresponds to Ψ̃i, where j ≤ i. (The possibility j < i

arises when there is an eigenstate Ψ̃ with a small enough overlap onto our k = 2A basis, that

it does not lead to a corresponding Φ̃2A, so that the set of variational trial eigenfunctions

is incomplete.) Then the normalised correlation function of Φ̃2A,j will be ≃ γ2
2A exp{−Eit}

in some range of t — the effective energy plateau. Then γ2A gives us the overlap of the

eigenstate Ψ̃i on Φ̃2A,j and hence, to a good approximation, on our k = 2A basis. Doing the

same with the k = 2S basis should give us the corresponding overlap γ2S . Now returning

to reality, we know that we will not see such a state at all in any sector where its overlap is

small. So in practice we can usually only calculate either γ2A or γ2S this way, but not both.

So suppose it is γ2A that is large enough to be clearly calculable. Then instead of looking

within the k = 2S basis to estimate γ2S , we look at the joint basis {k = 2A}⊕{k = 2S}.
Here the overlap is γ2AS and must be larger than γ2A, so the state will certainly be visible

to the variational calculation. If we take the k = 2A and k = 2S bases to be approximately

orthogonal to each other, which we have shown above to be the case, then we can estimate

γ2
2S ≃ γ2

2AS − γ2
2A. If the state is more k = 2S than k = 2A then we follow the same proce-

dure but with 2A with 2S interchanged. So in this way we obtain an estimate of γ2
2A and

γ2
2S for each energy eigenstate. These estimates are of course approximate. In particular,

our k = 2A and k = 2S bases are not complete, so that γ2
2A +γ2

2A < 1 and becomes more so

(typically) for higher excited states. In addition the non-orthogonality of the k = 2S and

k = 2A sectors introduces an ambiguity in interpreting the results, but this is very small.

We show a selection of such analyses in figure 11. The examples are all from SU(4) at

β = 50. (The SU(5) results would be very similar.) We show results for the P = +, q = 0

spectrum for the two string lengths shown, as well as results for the longer string length

for the P = −, q = 0 and P = −, q = 1 sectors. For each state we show our estimate of the

k = 2A (red circle) and k = 2S (blue square) overlap squared. We see that all the states

are predominantly in one sector or the other. In some cases the sum of the overlaps is

significantly less than unity, and that simply reflects the overlap of that state on our whole

basis. This effect becomes stronger for the higher excited states.

6 ω = 2 ‘unbound’ fundamental flux loops

So far we have focused on k = 2 bound states. However the k = 2 sector should also include

states that consist of a fundamental flux loop that winds twice around the spatial torus,

and whose spectrum will be given, to some first approximation, by eq. (3.9) with ω = 2.

These states can be thought of as corresponding to two unbound fundamental flux-tubes.

Such states might suffer large corrections because in D = 2+1 such a double winding loop

will necessarily cross itself and we know that there are interactions between loops that are

strong enough to bind them into the k = 2A strings. Moreover the ω = 2 loops should

typically be more massive than the corresponding k = 2A states and so they will typically

appear in a part of the k = 2 spectrum where they might be confused with other excited

states. All this should make them non-trivial to observe and so what we shall attempt in

this section is no more than a preliminary search for such ω = 2 flux loops.
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Figure 11. Overlaps squared onto k = 2A (red circle) and k = 2S (blue square) of the low-lying

k = 2 flux tube states with the lengths l shown. In sectors, from left to right, {P = +, q = 0},
{P = +, q = 0} top, and {P = −, q = 0}, {P = −, q = 1} bottom. All in SU(4) at β = 50.

For this purpose we include in our basis additional operators of the form in eq. (2.4).

We then perform the same calculation as in the section 4 but within this extended basis.

Comparing the resulting spectra to those previously obtained in section 4, we attempt

to identify new states. The new basis of operators that has been used in our calculation

consists of approximately ∼ 240 operators.

In figures 12 and 13 we compare the SU(4), P = −, and q = 0 spectra obtained with

and without the extra ω = 2 operators, and we do indeed observe that the former appears

to contain two extra states, which we have shown as solid black symbols. For comparison,

the blue line represents the NG prediction for a ω = 2 k = 1 string, using σ = σf and

NR = NL = 2 in eq. (3.9). The red line represents the NG prediction for the ω = 1 k = 2

antisymmetric representation with the same values of NL and NR and with σ = σ2A. As

we see from table 1, the ground state of a winding string with P = − and q = 0 should be

two-fold degenerate, and previous calculations for ω = 1 k = 1 flux tubes [2] have shown

that what one gets is one state which is close to the theoretical NG prediction and another

one that approaches the theoretical prediction from above as l increases. We observe
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Figure 12. Spectrum of k = 2 flux loops with P = − and q = 0, as extracted using the extended

basis of operators, that includes w = 2 k = 1 operators as in eq. (2.4).
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Figure 13. Spectrum of k = 2 flux loops with P = − and q = 0, as extracted using only our usual

normal k = 2 basis of {k = 2A}
⊕

{k = 2S} operators, as in eq. (2.3), and excluding the ω = 2

states

precisely such a behavior in figure 12, with the lighter state, represented by a star, being

close to the w = 2 prediction and the heavier state, represented by a circle, approaching

the blue line from above.

To confirm that these two states are primarily associated with the extra ω = 2 operators
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Figure 14. The contribution of each of our extended basis of operators to the ground and first

excited states shown in figure 12 for L = 16a. For i ≤ 100 the operators are the ordinary k = 2

ones and for i > 100 the operators are the additional w = 2 ones.

in our extended basis, we show in figure 14 the projection of the variational eigenstates

corresponding to the ground and first excited states onto all the operators in our basis.

We have chosen to look at l = 16a (l
√
σf ∼ 2.1) where these states are (supposedly) the

lightest ω = 1 k = 2A and ω = 2 k = 1 states. For this lattice size we have 160 operators

in total, of which the first 100 are our ordinary k = 2 operators, and the last 60 are our

extra ω = 2 operators. As can be seen, the ground state projects mainly onto ordinary

k = 2 operators, while the first excited state projects almost entirely onto the w = 2 sector

of the operator basis. This supports our earlier interpretation of these states.

It is interesting to note that the w = 2 operator that contributes the most to the

first excited state is the rectangular pulse (table 4, number 3) at blocking level 4 and,

therefore, the transverse deformation has a physical length of 16 lattice spacings. A pictorial

representation of this operator is included on the panel of figure 14. We see that it is

shaped like an oscillating closed string with two nodes, doubly wound around the torus.

This provides further heuristic support for our conclusion that the complete k = 2 string

spectrum includes unbound wave-like ω = 2 states.

7 Looking for extra massive states

As we remarked in section 4.1, the interpretation of the first excited state in the k = 2A,

P = +, q = 0 spectrum shown in figure 5, is ambiguous. It might be the first string

excitation, with a large correction to the Nambu-Goto free string energy, which is shown
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Table 4. The sixteen transverse deformations used in the construction of the operators in this

work. Each line comes in five different blocking/smearing levels, in order to enhance the overlap

onto the physical states.

in figure 5 and which it appears to be approaching as l ↑. Alternatively it might be a new

excitation that arises from one of the massive modes of the ground state flux tube being

excited. Indeed, as we see from figure 5, the energy of this state does differ from that of the

ground state by roughly a constant as l varies. In this scenario, the energy approaches the

energy of the first excited Nambu-Goto state, only to cross it at some larger value of l and

in that case it is presumably the next state up in energy which is the true stringy excitation

(and which indeed is much closer to the Nambu-Goto value for most of our values of l).

Since the identification of such extra states would (begin to) provide a completely new

source of useful information about the string description of the gauge theory, resolving this

ambiguity is important, and that is what we turn to now.

If the state is indeed an approximate Nambu-Goto-like string excitation of the k = 2A

flux tube, then we would expect its wave-functional to have the appropriate ‘shape’. What

that ‘shape’ should be, in terms of our highly blocked/smeared link matrices, is not at all

evident, but it is something we do not need to know. It is enough to note that we have

already established [2] that the relevant part of the fundamental k = 1 flux tube spectrum

is Nambu-Goto-like. Indeed the k = 1 analogue of figure 5 shows only small corrections to

the free string energies. So all we need to do is to compare the wavefunctionals of the first

excited k = 1 and k = 2A states, in exactly the same lattice calculation, and see if they

are very similar or very different.

The way we make this comparison is as follows. Let {φi; i = 1, . . . , no} be our set of

winding operators where the number is typically no ∼ 100. In the present case, we choose

them to have P = + and q = 0. These operators are group elements (not yet traced) and

may be in any representation of SU(N). Suppose the flux is in the representation R. When

we perform our variational calculation over this basis, we obtain a set of wavefunctionals,

Φn
R, which are an approximation to the corresponding eigenfunctions of the Hamiltonian.
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These wavefunctionals are linear combinations of our basis operators:

Φn
R =

no
∑

i

bnR,icR,iTrR(φi) ≡
no
∑

i

bnR,iTr′R(φi) (7.1)

where the coefficients cR,i are chosen so that we have the normalisation condition

〈Tr′†R(φi(0))Tr′R(φi(0))〉 = 1 (7.2)

The purpose of this common normalisation is to make a comparison of the coefficients bnR,i

for different R, meaningful.

The basic idea now is that the coefficients bnR,i encode the ‘shape’ of the state cor-

responding to the wavefunctional, because they multiply the same operators, albeit in

different representations, and with a common normalisation. So to compare our excited

k = 1 and k = 2A wavefunctionals we need simply compare their coefficients bnf,i and bn2A,i.

This would be straightforward if the φi basis operators were orthogonal, but since they are

not, and some have very large overlaps with each other, apparently different sets of bi’s can

in fact correspond to very similar wavefunctionals. Normally the obvious way to surmount

such obstacle would be to calculate directly the overlap of the two wavefunctionals we want

to compare. Unfortunately here that does not work because the operators have different

N -ality so that the overlap will be zero. So to proceed we need to transform the N -ality

of the k = 2A wavefunctional to k = 1 while preserving its essential spatial characteristics.

We do so by the simple substitution (with t = 0 throughout)

Φn
2A =

no
∑

i

bn2A,iTr′2A(φi) −→ Φ̃n
2A =

no
∑

i

bn2A,iTr′f (φi) (7.3)

where we replace Tr′2A by Tr′f in the expression for Φn
2A. Intuitively it is plausible to think

of Φ̃n
2A as having approximately the same ‘shape’ as Φn

2A, so that if we now compare Φ̃n
2A

directly with any Φn′

f by the calculation of their normalised overlap

On′,n =
< Φn′†

f Φ̃n
2A >

< Φn′†
fΦn′

f >1/2< Φ̃n†
2AΦ̃n

2A >1/2
(7.4)

we are in fact comparing the shape of Φn′

f with that of our original Φn
2A wavefunctional.

The above method of comparison clearly has a strong heuristic component and to

some extent our confidence in the result will depend on how clear-cut it proves to be. So

we take our four lightest k = 2A (variational) eigenstates, form the corresponding set of

{Φ̃n
2A;n = 0, . . . , 3}, and take the overlap of each one of these with the corresponding k = 1

(variational) eigenstates, {Φn
f ;n = 0, . . . , 3}. Note that the former are not necessarily

orthogonal, while the latter are, by construction (just as were the original {Φn
2A}). We

begin by showing the results, in figure 15, for our longest l = 32a flux tube in SU(5). We

see that the k = 2A ground state has an overlap that is virtually 100% on the k = 1

ground state. Since we have already established that both ground states are to a very good

approximation described by the free string theory, this result serves to give us confidence
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Figure 15. The Overlaps defined in eq. (7.4) for the lightest four states in the SU(5) k = 2

antisymmetric representation with P = +, q = 0 and flux tube length l = 32a.

in this method of comparison. Turning now to the first excited k = 2A state, which is the

one whose identity we are most interested in here, we see from figure 15 that this has an

overlap that is almost entirely on the first excited k = 1 state. Since we have established

that the latter is a Nambu-Goto-like stringy excitation, we infer that so is the first excited

k = 2A state. Thus we have our answer: this state is tending to Nambu-Goto and is not

an ‘extra’ state involving massive excitations of the flux tube.

We also see from figure 15 that the next two P = +, q = 0 k = 2A excited states

are very similar to the corresponding k = 1 states and therefore also Nambu-Goto-like. In

figure 16 we show the corresponding plots for length l = 16a. The results for the ground

and first excited states are unambiguous, but the comparison for the higher excited states

is now less clear-cut. Perhaps not surprisingly, the states become more clearly Nambu-

Goto-like as we go to longer strings.

We have repeated this whole exercise for the k = 2S representation. Once again we find

that the ground state has an almost 100% overlap onto the k = 1 ground state. However

the first excited state is less clear-cut than for k = 2A, and the comparison for other states

produces no useful information at all.

We have learned that the first excited k = 2A state in the P = +, q = 0 sector is in

fact Nambu-Goto-like, so it has two phonons of momentum p = ±2π/l. The fact that there

is such a large correction to the free string energy when l is not very large, tells us that

these phonons have a large interaction energy. On the other hand we have seen that the

ground state k = 2A state with P = +, q = 2 has an energy very close to the free string

energy at all l. This state has two phonons of the same momentum p = 2π/l. Thus we

– 29 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
9

321g.s

1

0
321g.s

1

0
321g.s

1

0
321g.s

1

0

Ground State 1st excited state 2nd excited state 3rd excited state

|OnF ,0|2 |OnF ,1|2|OnF ,1|2 |OnF ,2|2 |OnF ,3|2

nF nF nF nF

Figure 16. The Overlaps defined in eq. (7.4) for the lightest four states in the SU(5) k = 2

antisymmetric representation with P = +, q = 0 and flux tube length l = 16a.

infer that the interaction energy of two phonons with the same momentum is very small.

So although we have not found an ‘extra’ state, we have learned something very specific

and interesting about the inter-phonon interactions.

8 Conclusions

In this paper we have examined to what extent k = 2 flux tubes that are wound around a

spatial torus can be described by an effective string theory. This study complements our

earlier study of fundamental (k = 1) flux loops [2], where we found that a simple Nambu-

Goto free string description described the spectrum very well, even when the length of the

flux tube was on the order of its width. Since one can regard a k = 2 flux loop as a bound

state of two k = 1 flux loops, one would naively expect the extra internal structure to

lead to larger corrections to any asymptotic free string description, and indeed that there

should be extra states that do not look like excited string states and which arise through

the excitation of the massive binding modes.

Because k = 2 states are much more massive than k = 1 states, some systematic

errors are much more important for the former. This has meant that our most reliable

calculations are for the ground states in the various sectors labeled by different quantum

numbers. These quantum numbers are the parity P and the momentum along the flux tube,

q. Since we expect the ground state unexcited flux loop to be invariant under translations

along its axis, and to be symmetric under reflections across its axis, having P 6= + and/or
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q 6= 0 explicitly probes the non-trivial excitation spectrum of the flux loop (in a way that

transverse momenta do not, which is why we do not consider them).

In addition to these exact quantum numbers, we have confirmed by explicit calculation

that there is very little overlap between the totally symmetric (k = 2S) and totally anti-

symmetric (k = 2A) representations. We thus find that our variational eigenfunctionals fall

into these representations to a good approximation, so that we can categorise the spectra

by their behaviour under the full SU(N) group, and not just its center ZN .

In the k = 2A sector we found that the ground states for q = 0, 1, 2 have energies

that are very close to those of the free bosonic string theory (Nambu-Goto in flat D =

2 + 1). The leading permitted correction to (E(q = 0; l)/(σl))2 is O(1/(
√
σl)5), and its

fitted coefficient has a natural value of O(1). This is in contrast to the fundamental flux

loop where the corresponding coefficient is unnaturally tiny, < O(1/10). More surprising is

that the q = 1, 2 ground state energies are well described by Nambu-Goto all the way down

to l
√
σ ≃ 1.5. Such a flux tube is a blob rather than a string and it is remarkable that the

thin string oscillation spectrum should accurately describe its lowest modes. Just as for

the k = 1 flux tube, one is tempted to read into this evidence for some kind of gauge-string

duality that makes a thin string the starting point for describing even a short blob-like flux

tube. For the low-lying excited states in the q = 0 sector the deviations are much larger

— and of a size that one would expect within an effective string theory description that

was only valid asymptotically.

The much heavier k = 2S sector is clearly afflicted by much larger systematic errors,

which strongly limits our ability to draw any useful conclusions, although here too the

ground states of various momenta q are recognisably string like.

As an interesting aside, by including operators that wound twice around the torus,

but such that the second winding overlapped little in space with the first, we were able

to identify some eigenstates that correspond to doubly wound fundamental flux loops, in

addition to the bound k = 2 singly wound flux loops.

While it is very informative to observe how well the various states are described by

simple free string excitations, this can only be the first step. We also need to pin-point the

nature of the corrections to the free string theory. This involves not only quantifying and

searching for patterns in the corrections to the free string excitations — the interactions

amongst the phonons — but also identifying excited states that are additional to those

associated with simple string oscillations. Such additional states, due to excitations of

massive modes, would normally be predicted by any theoretical approach.

For example, in a naive field theoretic approach, where the flux tubes are some kind

of dynamically generated non-Abelian Nielsen-Olesen vortices, there should be massive

excitations associated with the nontrivial flux tube structure. In an ‘AdS/CFT’ approach

there would be a highly curved metric in the region of the higher dimensional space where

the string picks up its non-trivial energy per unit length. Naively, the energy of such an

‘extra’ state should be some (roughly) constant amount µ above the ground state energy.

As we remarked earlier, a naive estimate for µ might be the lightest glueball mass, ∼ 4
√
σf ,

or possibly the gap between the lightest glueball masses, ∼ 2
√
σf . On such an estimate,

such states should be easily visible for small flux tube lengths, where they would be lighter
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than some of the simple thin string excitations. A glance at the q = 0 spectra in figures 6

and 5, immediately suggests that the first excited state could be a candidate for such a

state. However our analysis in section 7 of the wavefunctional of that state showed that its

‘shape’ was too much like that of the corresponding k = 1 flux tube, which is unambiguously

Nambu-Goto-like, to believe that it is anything other than a simple string excited state. We

have in fact not observed any states, in the range of energies where we have some control,

that could be interpreted as such non-stringy excitations. This could either mean that we

have a poor overlap onto such states or that their masses are much larger than expected.

(The glueball mass might not be a good guide if its dynamics is that of a string-like

contractible closed loop of flux, so that neither its mass nor the gap to the first excited state

are strongly influenced by the dynamics associated with the non-stringy massive modes.)

In the former case it means that we must suitably extend our basis of operators; and for

that purpose it would be useful to have some guidance from, say, the gauge-gravity side,

about the lightest such extra states. In the latter case, the implication would be that the

non-stringy physics was essentially decoupled from the low-energy physics of the confining

gauge theory. Resolving this issue would provide something very interesting in either case.

Although the question of non-stringy ‘extra’ states has not been settled in this paper,

we have been able to identify some qualitative features of the interactions amongst the

phonons along the flux tube. As we have just remarked, we have shown that the first

excited q = 0 P = + state is in fact a string excited state, i.e. it has two phonons of

opposite momentum p = ±2π/l. And, as we see in figures 6 and 5, the energy of this state

has very large corrections to the corresponding free string energy. On the other hand the

lightest q = 2 P = + state, which has exactly the same two phonons, but with the same

momentum, has as we see in figures 1 and 2, an energy that is virtually identical to that

of the corresponding free string state, over our whole range of l. Thus we can come to

a very specific conclusion about the non-trivial interactions between two phonons: they

are negligible when the phonons have exactly the same momenta (and are therefore at

‘threshold’), but are large when the momenta are exactly opposite.

One might ask why such a conclusion had not already been reached in our much more

accurate calculations of the fundamental k = 1 flux loop spectrum in [2]. There are at

least two plausible reasons. Firstly, we have seen that the corrections are in general much

smaller for k = 1 than for k = 2 flux loops, so much so that the first excited q = 0

P = + k = 1 flux loop looks, at a first glance, to be close to the free string prediction.

Secondly, we observed in [2] some significant corrections in the q = 2 spectrum at small

l, in contrast to the case of k = 2. However we have since been able to show that these

are largely due to lattice spacing corrections to the energy-momentum dispersion relation.

Thus a renewed analysis may well show that the k = 1 flux loop displays the same kind

of non-trivial interaction between phonons that we have seen with the k = 2 loop. The

fact that the k = 2 calculation in this paper has been performed at a smaller value of a,

together with the fact that the k = 2 loops are much heavier and therefore less sensitive

to the momentum and to any lattice corrections thereof, may be part of the reason that it

has been easier to identify this effect in the present, nominally more difficult, calculation.

There is of course much more information about the phonon interactions, that is
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implicit in our calculations. We have focused on the above single result because it

involves energy levels that are non-degenerate, making the argument and conclusion

particularly straightforward. In most other cases corrections to the Nambu-Goto energy

levels are accompanied by splittings and (presumably) mixing of the would-be degenerate

string states, and this will complicate the analysis. While there are other examples

of non-degenerate states that can be usefully compared, e.g. the ground state in the

P = +, q = 3 sector and the first excited state in the P = +, q = 1 sector, these involves

values of momentum q > 2 which have not been studied in the k = 2 calculation of

the present paper (but have been included in our accompanying k = 1 calculations).

We therefore leave a more complete analysis to a forthcoming publication [17] that will

describe in detail all our k = 1 and k = 2 calculations.
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A Construction of operators

To calculate the excitation spectrum of k = 2 strings, it is necessary to find a way to

project onto such states. The way to achieve this is to find a suitable basis described by

good quantum numbers, in which our operators will be encoded. In our case, this basis

is defined by the quantum numbers of momentum, q, along the string, and the parity P ,

where the latter tells us how a string transforms under reflections in its transverse axis. This

imples that we need to introduce transverse deformations in Polyakov loops and construct

line paths that transform in a certain way under such parity reflections and longtitudinal

momentum. In general, the more operators we use the better the results we obtain; we

therefore construct a plethora of Polyakov paths trying to extract states with high overlaps.

In the first step of the calculation we construct the most commonly used k = 2 string

operators: (Tr{lp})2 and Tr{l2p}. Our desire to extract the excitation spectrum and in-

troduce more degrees of freedom, such as the transverse parity and momentum, forces us

to modify them and thus to complicate their structure, as discussed in section 2.3. In

eq. (A.1), (A.3) we demonstrate how these new operators are composed for the k = 1, 2

cases. For simplicity, below we demonstrate the way our operators have been constructed

with a particular transverse deformation that is easy to visualize. First are the negative

and positive parity operators for the k = 1 strings:

ΦP=±
k=1 = Tr { } ± Tr { } . (A.1)
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From these we construct the two simplest sets of positive and negative parity operators for

the k = 2 string, i.e. those corresponding to Tr {lp}2

ΦP=±
k=2 = Tr { }2± Tr { }2 , (A.2)

and those corresponding to Tr {l2p}

ΦP=±
k=2 = Tr { · } ± Tr { · } . (A.3)

Next, we project onto the k = 2 totally antisymmetric and symmetric representa-
tions. To single-out the irreducible representations which describe the theory, we perform
antisymmetrisation and symmetrisation according to the relevant Young-tableau decom-

position of k = 2 fundamental colour sources:
⊗

=
⊕

. The resulting operators

will be of the type: Tr{lp}2±Tr{l2p}, where +(−) for symmetric(antisymmetric) representa-
tion. Once more we need to introduce transverse deformations, in order to project onto the
non-trivial irreducible representations that characterise the closed flux tube in D = 2 + 1.
Examples of such operators are demonstrated in eqs. (A.4), (A.5) below. Begining with
the projection onto the k = 2 antisymmetric representation we find

ΦP=±

k=2A = [Tr { }2− Tr { · }] ± [Tr { }2− Tr { · }],
(A.4)

and projecting onto the k = 2 symmetric representation one obtains

ΦP=±

k=2S = [Tr { }2+ Tr { · }] ± [Tr { }2+ Tr { · }].
(A.5)

As the notation suggests, in both cases above the ± signs determine the parity P = ±
of Φ. The complete set of polyakov lines used in our calculation is presented in table 4.

As mentioned in section 2.3, we have also attempted to test whether the k = 2 string

spectrum includes unbound w = 2 states, which we expect will only appear in our calcu-

lation if we use the appropriate operators. These new states are expected to be described

by frequencies lower than those describing the w = 2 bound states. Although some k = 2

operators look as if they wind twice around the torus i.e eqs. (A.2), (A.3), the way we

had been constructing them prohibits us to project onto states with lower frequencies since

each Polyakov loop starts and ends at the same lattice point within one lattice size. To

overcome this we construct Polyakov lines that wind twice around the torus with transverse

deformations at the joint of the two lattices as in:

ΦP=±
w=2 = Tr { } ± Tr { } . (A.6)

Note the number of lattice links in the x directions that goes into each of the operators

in the traces above is 2Lx, i.e. twice the lattice size. This is in contrast to the case of

eqs. (A.2)–(A.3), where it is only Lx.

Finally, let us note that the new operators in eq. (A.6) transform the same under the

centre of the group ZN as the other k = 2 operators i.e Φw=2 = Tr(lpl
′
p) → z2Tr(lpl

′
p).

So these new ‘unbound’ operators have N -ality k = 2 and will therefore contribute to an

extended k = 2 spectrum.
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